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ABSTRACT

The connection between complementary energy and catastrophes is indicated

by a simple example, and by referring to work which shows how Legeridre transfor-

mations can be continued through their singularities where the Hessian is zero.

An experiment is described giving a mapping of the plane onto the plane whose

stable singularities appear to be folds and angles, rather than folds and cusps.

The work is directed towards the general problem of how integrands in dual

variational principles can pass through their singularities.

The material forms the basis of a lecture to the I.U.T.A.M. Symposium on

Variational Methods in the Mechanics of Solids, Northwestern University , U.S.A.,

September 1978, and will be published by Pergamon Press in Proceedings edited

by S. Nemat—Nasser.
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SIGNIFICANCE AND EXPLANATION

W~~ n necking ” occurs in a bar under tension , the curve of nominal stress s

aqainst strain e looks like :

S
4

/ s s(e)

—/w ( E)

E

The quantity W(E) is the energy in the bar when the strain is E, represented by

the vertically hatched area ; the quantity W (S) is the complementary energy in the

system , represented by the horizontally hatched area. The graph of W (E) against

E looks like the picture on the left below; the plot of W (S) against S looks

like the plot on the right.
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The point that the graph on the right illustrates is that the complementary energy

in nonlinear elasticity can be a multi—valued function . It is of some interest to

know the precise qualitative way in which the different branches fit together, and
this is deduced in a simple example. The result is prompted by ideas in catastrophe

theory .

From a different but related point of view , the simplest singularities that
are “structurally stable” in the mathematical sense are those that can occur when

mapping a plane onto itself. An experiment is described (involving crumpling a

plastic sheet on to a plane) that gives some insight into these mathematical ideas.

The r ‘~nsibility for the wording and views expressed in this descriptive summary
li~~ wit~i ~1 ’ , and not with the author of this report.
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COMPLEMENTARY ENERGY AND CATASTROP HES

M. 3. Sewell

1 IN TRODUCTION

The purposc of these brief remarks is to draw attention to the way in which

some rudimentary knowledge of the elementary catastrophes may be used to focus

on the problem of finding a complementary energy in situations where the original

response curve (for example expressing stress in terms of strain) is not monotonic.

The work is only at a preliminary stage, and we shall confine attention to a

setting of the problem in terms of what is now known from this author ’s work

[1-3] about continuing a Legendre transformation through the singularity where

its Jacobian vanishes.

One of the most familiar examples of a Legendre transformation is expressed

by the equations

p .  = — <=> q. = —
1 • 1 3p .

1

allowing one to pass between the Lagrangian function L(q.] and the Haxniltonian

function H[p.] of a classical discrete system , with n momenta p. and n

velocities 
~~~

. . Position q. and time t may appear passively in these

functions. Standard texts frequently make the tacit assumption

that the transformation is non-singular without any discussion. By a slight

extension of modern terminology we could say that L[q.] is a Morse function at

such a non—singular point, but is non—Morse where the determinant vanishes.

Closed chains of four Legendre transformations , linking four generatinu

functions , are found in some subjects . Sewell [3 ,41 indicates such chains in

Sponsored in part by the United States Army under Contract No. DAAG29—75-C-0024
and in part by the University of Reading , Mathematics Department, 

U.K.4



.—,————-— — - 

classical mechanics, circuit theory, thermostatics and plastic constitutive equa-

tions. The classical thermodynamic potentials of free and internal energy ,

enthalpy and free enthalpy , are linked by one such chain. In this particular

context several authors have independently found catastrophe theory helpful in

discussing singularities in the chains , and associated phase transitions , and

Poston and Stewart (5 , Ch. 141 give one such viewpoint.

2 ONE-DIMENSIONAL EXAMPLE

Suppose we have a context in which there is a response curve s = s(e)

relating two variables which fails to be monotonic in the manner illustrated in

Fig. 1. For convenience we shall call s stress and e strain. We have in

mind that s may be a ‘nominal ’ stress (load per unit of some ini tial area)

instead of ‘true ’ stress (load per unit current area), but we do not at this

stage make a precise choice from among the many definitions of stress and ‘con-

jugate ’ strain contemplated by Hill (6] and others in the modern continuum

mechanics literature . There is some evidence, lately reviewed by Hudson, Crouch

and Fairhurst [7], that stress-strain curves having the general shape of Fig . 1

occur in rock mechanics , for example.

The ‘strain energy ’ function W(E) is the area under the curve up to the

value E of e, i.e.

E
W(E) = f s(e)de

0

In the range shown in Fig . 1 this has derivatives

2 3 2dw d W  ds d W  d ss (E )  > 0, —i = ~~~~~~~~ —i- —i- < 0
dE dE dE

and so the strain energy function W(E) is rising but with an inflexion associated

with the stationary maximum of s(e), as shown in Fig . 2.

Let S denote the value of s(e) at e = E. The ‘complementary enelgy ’

function W (S) is ~efined to be the area specified again by E but this time

—2—
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betw n the curve s(tA ) and the s-axis . The definition is unambiguous with

ds d W
jc~~tt i v~ ~1r e u s  until the singularity is reached at 0 = = —i, but beyond

that point the area between the falling part of Fig. 1 and the s—axis is to be

counted as negative . This is consistent with the values

W = SE — W(E)
C

assigned to W (S) by the Legendre transform definition. The resulting function

has slope

which is continuous and increasing through the singularity, even though its value

regresses from there like that of S. It follows from these facts that the

complementary energy function W (S) is cusp-shaped as shown in Fig. 3.

The value S~ where W (S~ ) = 0 corresponds to the particular E* for

which the two shaded areas of Fig . 4 are equal in magnitude.

This elementary analysis suggests that the presence of a cusp may be an intrin-

sic feature of complementary energy functions in particular, and of dual Legendre

functions in general, when we have to deal with singular ities of the type indicated

by failur e of monotonicity in the relation between response or ‘active ’ variables .

The Legendre transformation does not necessarily fail altogether , but extra care

is required in taking it through the singularity .

The point w ill be pertinent not only in mechanics of solids , but in dual

variational problems in any field (cf. the review of Noble and Sewell [8]), since

Legendre transformations connect the integrands of dual principles. A specific

calculation illus trating this in compress ible fluid mechanics is descr ibed by

.;ewell. (2] . In that context -w and E are fluid pressure and speed respec-

tively, and the thermodynamics leads to a function WEE] which has the inflexion

~f F i g .  2 at the sonic speed . The dual active variable S takes the values of

—4—

——as—— .-



~ — — ---- . —---

mass flow = density X speed , while the ‘complementary (n (rq5 ’ fur~~tior i ~~~~(~ :)

takes the values of pressure 4- density ~ (speed)
2 

and has the cusp of Fiq . 3 ~ t

the sonic singularity . A comprehensive statement of the associated variational

principles was given in 1963 by Sewell [91

3 STRUCTURAL STABILITY OF A PLANE MAPPING

To anticipate what might be the essence of generalizations of the elementary

calculation of the Section 2 to the case of, for example, constitutive equations

expressed invariantly for three space dimensions in terms of tensor functions , the

Legendre duals of certain of the elementary catastrophes were calculated by

Sewell (1,2]. The reason for emphasizing the catastrophes is connected with the

idea of structural stability, and the purpose of this Section is to give a novel

explanation of that idea in a particular case.

We shall consider only smooth mappings of the plane onto the plane , which we

write as

u = u[x , yl V = vEx , y)

There is a theorem of Whitney [10] stating that the only stable singularities

of such mappings occur along what are called ‘folds ’ (which appear as curved

lines in the x , y plane) or at ‘cusps ’ (which appear at points where two such

lines meet tangentially). A singularity is where the Jacobian vanishes . An

explanation of these ideas convenient for applied mathematicians is to be found

in an article by Thorndike, Cooley and Nye [12] * These authors go on to

consider the example of the hodograph transformation in which x , y are place

coordinates and u, v are velocity components , and they exhibit experimental

evidence of the singularities in the velocity f ie ld  of the polar ice cap.

Here we offer new experimental evidence from nearer home. Take a thin sheet

of clear f lexible  polythene or plastic, which can be cut out f rom an or d ] r 1 1 r ’~

household plastic bag obtainable from grocer or supermarket . Imag ine the u, V

coordinate system drawn onto the plastic sheet. Regard the workinu i late of a

—5— 
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viewgr aph  ou over l ie~e1 pro jec tor  as the x , y pla ne. Sw i t c h  on t h e  ~r’ ~j t ’t ol

crumple the ~1 as ti c  ar b i t r a r i l y  in the hand and put i t  down on the pl~~t L  et t t e

projector . Prt s it down flat with a sheet of clear glass. This procedure

defines a typical mapping of the x , y system onto the u, v system , which we

can conveniently examine in a lecture by looking at the image projected onto the

screen. Two examples are shown in Figs. 5 and 6 (obtained with an initially

rectangular sheet whose edges show up in certain places).

What do we see? Above each x, y point of the plate there lies one or

more u , v points of the plastic , or none at all, depending on the number of

local layers into which it happens to have been folded . The number of solutions

of the mapping could be counted by calibrating with the varying shades of grey

in the photograph - more solutions mean less light transmitted . The shade changes

at the lines which , unless they are edges of the finite sheet, represent folds

in the plastic and singularities in the mapping where the number of solutions

changes by (typically) two. The actual number of solutions depends , of course , 
*

on what assumption is made about how the plastic sheet extends to infinity after

the mapping process.

It appears that (apart from edge effects) a fold terminates only where it

meets another fold . Such meeting points are also singularities of the mapping ,

but it appears that they are typically shaped like finite angles and not cusps

(zero angles). In some cases it is hard to be sure when we look on the finest

local scale, but a qualitative theory which is only verifiable under a magnifying

glass may be misleading when a natural scale is semi—global or macroscopic.

Frequently angles appear in pairs at the same point, and sometimes in complementary

pairs, as in the classical ‘folded handkerchief’ illustrated in Fig . 8.

The primary observational conclusion is therefore that the only stable

singularities of such a mapping of plane onto plane are folds and angles, not

-6—
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f o l d s  and cu~~ -~ as W h i t ney ’ s t- h - ~~~~-m t n r * s . The d iscr  j O ~~~ may be a r i s i r ;

because t i e  exp er imen t  is not cons t ruot  ing 1 o r a l  ma i ~- in qs , but r l y

cons t ra ined  by the fac t  that  very l i t  t le - r r~~ eX t - r - , i -~~~ I or s he ar i n g  d i s t o r t i o n

t angen t i a l l y  in the sheet is being ~- - - 1 . I t  would be v - r ~ conve nien t  for

pedagogic purposes if one of our pure ma thema t i ca l  colleagues wou~~ write out a

self-contained proof of a theorem s ta t ing under what  circumstances folds and

angles are the only stable s ingular i t ies  of plane mappings.

An unstable s ingular i ty  is i l lus t ra ted  in Fig . 7.  First make a single fold

(thus giving the plastic a V-shaped cross—section across the single line singu—

lari ty)  . Start ing at the angle in Fig . 7 , this has been converted into an

enlarg ing treble fold with W-shaped cross-section.

The two bottom folds in the W overlay each other exactly in Fig . 7 , but

this is only achieved by special precautions and is therefore untypical and an

unstable s ingular i ty  of the mapp ing . If we disturb the configL~ a~ ion of Fi g . 7

by rotational sliding around the angle , we obtain two complementary angles at the

same point , as shown in Fig . 8. The relative locations of the angles and folds

in this configurat ion persist under this particular c i rcumferent ia l  kind of

disturbance (even though the sizes of the angles and the positions of the folds

do not) . The angles and folds of Fig . 8 are therefore stable s ingular i t ies  in

that sense. A radial disturbance , seeking to separate the corners of the two

angles , sometimes seems to create the suggestion of a cusp on the finest scale ,

as if by a particular section of the hyperbolic umbilic .

The idea of illustrating singularities of plane maps by folding pieces of

paper is of course very familiar , and a convenient review has been given rerently

by Callahan [12]. I have not seen it used before with clear flexible plast - on

a viewgraph for lecture demonstration purposes (Sewell (13]) in the way described

here.

We can also introduce an index to represent some of the properties of

topological degree , as follows . Distinguish between the two sides of the plastic

— 9-
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a - t , by d~~; 
~ ;n a t inq  one as the ‘ u~ p -r ‘ s ide wh -n the  el - t  i ia id  f i  ~~ t er . tl

Late I the v t- w~ ra}-h . Af t  ~- i  the mappi ng has been er f o rmed , k .ri . a~. in

Fi gs.  3 — 8 , assign in index i to each poin t of the sl eet as fol lu w~- : i = 1

wher~ v~ i- the ‘upper ’ side still faces upwards; i = —l if the upper side eas

been turned over to face downward ; i = 0 along every fold  except where  i t

termina tes  in an angle pointing into a +1 or a —l region; I = *1 or -l

respectively at angles of the latter type . The last three properties are rather

more specific than the analogous ‘property 5’ employed by Benjamin  [ 14] in apply-

ing Leray-Schauder degree theory to b i furca t ion  phenomena associated wi th  t h e

Navier-Stokes equations , in particular to the Taylor column problem. They suggest

cer ta in  other viewpoints for that problem which there is not space to describe here.

We note that, in the present situation, over any x , y point the sum of tI e-

indices attached to all the associated u, v solutions is a constant, for ex a mp l e

zero in the case of a simple fold or its perturbations in Figs.  7 and 8. The

constant may also be 
- 

+1 or — 1, as when a single angle is present in a ste t

otherwise extending to infinity in all directions . The case of +1 is analo !o :

to Benjamin ’s theorem (op . cit. ‘property 4’) for fluid flows which can evolve in

pr inc ip le  from a uni que stable flow .

It is worth noting that the Whitney theorem and the degree theory are not

restr icted to circumstances in which a variational principle exists .

4 LEGENDRE TRANSFORM S OF ELEMENTARY CATASTROPHES

When a variational principle does exist however , we expect there  to be more

than two stable singulari t ies  of associated projection mapp ings , and in f i n i t e -

dimensional theory without  symmetry constraints these are described by the d c v

elem -rta ry catastrophes (5 cuspoids including fo ld  and cu sp , and 6 umbi l i c s) . The

remainder  of t h i s  lecture described the ‘ladder for the cuspo ids ’ established in

111 f o r  r e l a t i n g  Legendre t r ans fo rms  and cuspoid catastrophes , a nd the Leqendre

t r a , e f o r r n s found in [2]  for the el l ipt ic  and hyperbolic ur r t h i l i c s . We do not

L

i t  that  i n f o r m a t i o n  here .

—10—
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The problem which remains  in d e r i v i n g  sp ec i f i c  c Or f l l l e m e n t a r y  - r s - r q l  , as lo

some other catastrophe theory investigat ions  where q u a n t i t a t i v e  r esul t -. a re

rea l ly needed , is to reintroduce the detailed diffeomorphisms which a pun  13

qualitative theory is entitled to discard .
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